三个食疗方节后助消滞******
广州日报讯 (全媒体记者王婧 通讯员林惠芳)节日期间美食当前,一不小心就吃多了,很多人可能会出现饱胀腹满等不适。广东省妇幼保健院中医科副主任医师刘嘉芬推荐三个食疗方法,帮助节后消滞、恢复肠胃功能。
消滞食疗方
材料:布渣叶10克、荷叶10克、麦芽30克、谷芽30克、山楂8克、绿豆30克、红枣3颗。
做法:以上材料加适量清水(约泡过药面5-8厘米),武火煮沸后转文火30分钟即可,一天一剂,代茶饮用。以上约为2-4人分量。
功效:健胃消食,适用一般人群,孕妇、哺乳期不适用。
陈皮大麦茶
材料:陈皮5克,大麦茶一小袋
做法:开水浸泡5分钟,可反复多次冲泡,当天饮用。
功效:健脾消积,适宜一般人群,哺乳期不适用。
白萝卜青橄榄炖瘦肉
材料:白萝卜一根,青橄榄数个,生姜3片,瘦肉250克。
做法:将上述材料洗净,白萝卜切块,青橄榄拍碎,瘦肉切块,加入适当水量,大火烧开转小火40-60分钟关火,放入食盐少许即可。
功效:消积利咽,尤其适合吃了煎炸食物咽喉不适者。
提速近10倍!基于深度学习的全基因组选择新方法来了******
近日,中国农业科学院作物科学研究所、三亚南繁研究院大数据智能设计育种创新团队联合多家单位提出利用植物海量多组学数据进行全基因组预测的深度学习方法, 可以实现育种大数据的高效整合与利用,将助力深度学习在全基因组选择中的应用,为智能设计育种及平台构建提供有效工具。相关研究成果发表在《分子植物(Molecular Plant)》上。
全基因组选择作为新一代育种技术,通过构建预测模型,根据基因组估计育种值进行早期个体的预测和选择,从而缩短育种世代间隔,加快育种进程,节约成本,推动现代育种向精准化和高效化方向发展。
统计模型作为全基因组选择的核心,极大地影响了全基因组预测的准确度和效率。传统预测方法基于线性回归模型,难以捕捉基因型和表型间的复杂关系。
相较于传统模型,非线性模型(如深度网络神经)具备分析复杂非加性效应的能力,人工智能和深度学习算法为解决大数据分析和高性能并行运算等难题提供了新的契机,深度学习算法的优化将会提高全基因组选择的预测能力。
该研究团队以玉米、小麦和番茄3种作物的4种不同维度的群体数据为测试材料,通过创新深度学习算法框架开发了全基因组选择新方法。
与其他五种主流预测方法相比,该方法有以下优点: 可以利用多组学数据开展全基因组预测;算法设计中包含批归一化层、回调函数和校正线性激活函数等结构,可以有效降低模型错误率,提高运行速度;预测精度稳健,在小型数据集上的表现与目前主流预测模型相当,在大规模数据集上预测优势更加明显;计算时间与传统方法相近,比已有深度学习方法提速近10倍;超参数调整对用户更加友好。
该研究得到了国家重点研发计划、国家自然科学基金、海南崖州湾种子实验室和中国农业科学院科技创新工程等项目的支持。
学术支持
中国农业科学院作物科学研究所
记者
宋雅娟
(文图:赵筱尘 巫邓炎)